線形代数学 ${ m I/}$ 基礎 2025 年度前期

線形代数学 I/基礎 練習問題 2

講義担当者: 中村 知繁

問題1

行列
$$A = \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 3 \\ 1 & -2 \end{pmatrix}$$
 とします。

- (1) 積 AB を計算しなさい。
- (2) 転置行列 $(AB)^T$ を求めなさい。
- (3) 積 B^TA^T を計算しなさい。

問題2

行列
$$A = \begin{pmatrix} 2 & 1 \\ 0 & -1 \\ 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 \\ 0 & -2 \\ 3 & 0 \end{pmatrix}$$
 とします。

- (1) 積 AB を計算しなさい。もし計算できない場合は「計算不可」と答えなさい。
- (2) 積 A^TB を計算しなさい。もし計算できない場合は「計算不可」と答えなさい。
- (3) 積 BA^T を計算しなさい。もし計算できない場合は「計算不可」と答えなさい。

問題3

行列
$$A=\begin{pmatrix}2&1\\1&1\end{pmatrix}$$
 とします。 $AX=\begin{pmatrix}3&5\\2&3\end{pmatrix}$ を満たす 2 次正方行列 X を求めなさい。 (ヒント: 逆行列の性質を考えましょう)

問題4

行列
$$A=\begin{pmatrix}1&0\\-1&2\end{pmatrix},$$
 $B=\begin{pmatrix}3&1\\0&1\end{pmatrix}$ とします。積 $(A+B)(A-B)$ を計算しなさい。

問題5

行列 $A=\begin{pmatrix}2&-1\\1&0\end{pmatrix}$ とします。 ケーリー・ハミルトンの定理を利用して、 A^3 を A と単位行列 I の線形結合 (kA+lI の形)で表しなさい。

問題6

行列 $A=\begin{pmatrix}1&2\\-1&4\end{pmatrix}$ とします。 ケーリー・ハミルトンの定理を利用して、行列の多項式 $P(A)=A^3-5A^2+7A-2I$ の値を計算しなさい。 ここで I は 2 次単位行列です。