線形代数学 I/基礎 練習問題 4

講義担当者: 中村 知繁

問1:共分散と相関行列に関する計算式の理解

以下の各問いに答えよ。

- 1. n 個のデータ組 $(x_1,y_1),(x_2,y_2),\dots,(x_n,y_n)$ が与えられ、変数 X の平均値を \bar{x} 、変数 Y の平均値を \bar{y} とするとき、変数 X と Y の共分散 $\mathrm{Cov}(X,Y)$ を計算するための定義式を、 \sum (シグマ) 記号を用いて記述せよ。
- 2. (1) で定義される共分散 $\mathrm{Cov}(X,Y)$ と、変数 X の標準偏差 σ_X および変数 Y の標準偏差 σ_Y を用いて、変数 X と Y の相関係数 ρ_{XY} を計算するための定義式を記述せよ。
- 3. 変数 X の偏差ベクトルを

$$\mathbf{x}_{dev} = \begin{bmatrix} x_1 - \bar{x} \\ x_2 - \bar{x} \\ \vdots \\ x_n - \bar{x} \end{bmatrix},$$

変数 Y の偏差ベクトルを

$$\mathbf{y}_{dev} = \begin{bmatrix} y_1 - \bar{y} \\ y_2 - \bar{y} \\ \vdots \\ y_n - \bar{y} \end{bmatrix}$$

とするとき、共分散 $\mathrm{Cov}(X,Y)$ を、これらの偏差ベクトル $\mathbf{x}_{dev},\,\mathbf{y}_{dev}$ とデータ数 n を用いて表す式を記述せよ。

4. 2つの変数 X と Y に関する共分散行列 Σ は、一般的に以下のような 2×2 の対称行列で表される。行列の各成分 A,B,C,D が、Var(X) (変数 X の分散)、Var(Y) (変数 Y の分散)、Cov(X,Y) (変数 X と Y の共分散) のうち、それぞれどれに該当するかを答えよ。

$$\mathbf{\Sigma} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

(ヒント: $\mathrm{Cov}(X,Y) = \mathrm{Cov}(Y,X)$ であり、変数の分散はその変数自身との共分散と等しい、すなわち $\mathrm{Var}(X) = \mathrm{Cov}(X,X)$ である。)

以下の 2 次元データ (X,Y) について考える。データ数は n=5 である。

データ点	X	Y
1	1	5
2	2	4
3	3	4
4	4	3
5	5	4

- 1. 変数 X と Y の平均 \bar{x}, \bar{y} 、分散 $\mathrm{Var}(X), \mathrm{Var}(Y)$ 、共分散 $\mathrm{Cov}(X,Y)$ をそれぞれ計算し、分数で答えよ。
- 2. (1) で計算した値を用いて、変数 X と Y の共分散行列 Σ_{XY} を記述し、相関係数 ρ_{XY} を計算せよ。相関係数は $\sqrt{\cdot}$ を含む形で答えてもよい。(共分散行列は $\Sigma_{XY} = \begin{bmatrix} \mathrm{Var}(X) & \mathrm{Cov}(X,Y) \\ \mathrm{Cov}(Y,X) & \mathrm{Var}(Y) \end{bmatrix}$ の形で表される。)

次に、これらのデータをスケーリング(線形変換)して新しい変数 X' と Y' を作る。変換式は以下の通りである。

$$X' = 2X$$
$$Y' = -3Y + 10$$

- 3. 新しい変数 X' と Y' の各データ点を計算し、表にまとめよ。
- 4. 新しい変数 X' と Y' の平均 \bar{x}', \bar{y}' 、分散 Var(X'), Var(Y')、共分散 Cov(X', Y') をそれぞれ計算し、分数で答えよ。
- 5. (4) で計算した値を用いて、新しい変数 X' と Y' の共分散行列 $\Sigma_{X'Y'}$ を記述し、相関係数 $\rho_{X'Y'}$ を計算せよ。相関係数は $\sqrt{\cdot}$ を含む形で答えてもよい。
- 6. (2) で得られた $\mathrm{Cov}(X,Y)$, $\mathrm{Var}(X)$, $\mathrm{Var}(Y)$, ρ_{XY} と、(5) で得られた $\mathrm{Cov}(X',Y')$, $\mathrm{Var}(X')$, $\mathrm{Var}(Y')$, $\rho_{X'Y'}$ を比較せよ。スケーリング X'=aX+b, Y'=cY+d (ここで本問題では a=2,b=0,c=-3,d=10 である) が、共分散、分散、相関係数にそれぞれどのような影響を与えたか考察し、変換の係数 a,c と関連付けて説明せよ。(ヒント:一般的に $\mathrm{Cov}(aX+b,cY+d)=ac\mathrm{Cov}(X,Y)$ 、 $\mathrm{Var}(aX+b)=a^2\mathrm{Var}(X)$ である。相関係数 $\rho_{aX+b,cY+d}$ と ρ_{XY} の関係性はどうなるか。)