コンテンツにスキップ
Statistical Learning Laboratory
48. Semester Exam
検索を初期化
tomoshige/website
Statistical Learning Laboratory
tomoshige/website
Home
Lectures
Lectures
Linear algebra
Linear algebra
Module 1 - Vector and Matrix
Module 1 - Vector and Matrix
1. Introduction
2. Vector and Matrix 1
3. Vector and Matrix 2
4. Vector and Matrix 3
5. Vector and Matrix 4
6. Vector and Matrix 5
7. Vector and Matrix 6
8. Vector and Matrix 7
Module 2 - System of Linear Equations
Module 2 - System of Linear Equations
9. System of Linear Equation 1
10. System of Linear Equation 2
11. System of Linear Equation 3
12. System of Linear Equation 4
13. System of Linear Equation 5
14. System of Linear Equation 6
Module 3 - Determinants
Module 3 - Determinants
15. Determinant 1
16. Determinant 2
17. Determinant 3
18. Determinant 4
Module 4 - Vector Spaces
Module 4 - Vector Spaces
19. Vector space 1
20. Vector space 2
21. Vector space 3
22. Vector space 4
Module 5 - Eigenvalues and Decomposition
Module 5 - Eigenvalues and Decomposition
32. Eigen value and vector 1
33. Eigen value and vector 2
34. Eigen value and vector 3
35. Eigen value and vector 4
36. Eigen value and vector 5
37. Exercise
38. Midterm Exam
39. Singular value decomposition 1
40. Singular value decomposition 2
Module 6 - Applications
Module 6 - Applications
41. Principal component analysis 1
42. Principal component analysis 2
43. Principal component analysis 3
44. Factor analysis 1
45. Factor analysis 2
46. Nonlinear dimension reduction
47. Wrap up
48. Semester Exam
Data Science without syntax
Data Science without syntax
Foundations
Foundations
1. Getting-Started
2. Data Visualization
3. Data Wrangling
Regression Analysis
Regression Analysis
4. Simple Linear Regression
5. Multiple Regression
6. Model Diagnosis and Selection
Statistical Methods
Statistical Methods
7. Sampling Method
8. Estimation, CI and Bootstrapping
9. Hypothesis Testing
10. Inference for Regression
Communications
Communications
11. Tell Your Story with Data
Website Design Competition
Website Design Competition
12. How to Create a Compelling Proposal
Statistics and Probability
Statistics and Probability
Research
Research
Decision Trees and Forests
Decision Trees and Forests
Generalized random forests
Variable Importance Measures
Random forest kernels
Causal Inference
Causal Inference
Sparse Causal BART
Causal mediation analysis
Causal data repository
Factor analysis
Factor analysis
Theoretical Foundations
Theoretical Foundations
1. はじめに
2. 因子とは
3. 因子負荷行列
4. 潜在因子推定法
Analysis Methods
Analysis Methods
5. 回転基準と結果の解釈
6. 感度分析
7. 因子分析の手順
Applications
Applications
8. シミュレーション
9. 糖尿病潜在原因分析
10. 順序ありカテゴリカル変数の扱い
11. 飛行機乗客満足度分析
Technical Notes
Technical Notes
12. 行列分解と因子分析
線形代数学 第48回 期末テスト
ページトップへ戻る